
L A.-AbA2 166 STANFORAD UN4IV.CA DEPT OF STATISTICS PO1/
I LAGE DVIAION PROBABILITIES FOR CERTAIN DEPENDENT PROCESSES.1U)

IMAR 81 K SINGH N00014-76-C-0475
UNCLASSIFIED TR-300 NL

*MENEMfllf Omn



(6 ARGE QEVIATION fROBABILITIES FOR)
CER TAIN DEPENDENT JROCESSES F..

Kesar Singh

Accession For

NTIS GRA&I

DTIC TAB
Unannounced U

(7) TECHNICAL REP&TO. 300 Justification

MAvailability Codes

IAvail and/or
Dist Special

(/( Prepard 1nde contract "

For the Office of Naval Research

Herbert Solomon, Project Director

Reproduction in Whole or in Part is Permitted
for any Purpose of the United States Government

DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY

*, STANFORD, CALIFORNIA

! .-4



LARGE DEVIATION PROBABILITIES FOR

CERTAIN DEPENDENT PROCESSES

by

Kesar Singh

1. INTRODUCTION

This work is a contribution towards relaxing independence in the theory

of LDP. Section 2 of this paper contains a Chernoff's theorem type result

for linear processes under the absolute summability condition of the coeffi-

cients. Sections 3 and 4 prove a kind of limit theorem for various statistics

based on m-dependent processes. The relevance of the later limit theorems is

explained below.

Let {AnI be a stochastic sequence intending to estimate the real para-

meter p. Consider the root of the equation

2(1 - 4,(e/yn )) - P(b.p_-pI > c)

where C is some positive number. If there is a sequence y(n) of positive

numbers s.t.

40im i n2 n,£/(n) I l-lim sup_,o li supn 2
liminf lim inf n-y YO n eYn /y(n)
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then y(n) is called AEV (asymptotic effective variance) of V n (see

Bahadur (1960)). If for all positive sequences e - > 0,

(1.1) n-1 log P(_ /2y)(1 + 0 + 0

where y > 0, lim+ 0 0 = 0 and limn 0 ,- 0 for all e sufficiently

small, then y/n is an AEV of "n and it is unique in the sense that for

any other sequence y'(n) with the same property, rn_ y/n Y'(n) = 1.

An estimate like (1.1) can be interpreted in testing of hypothesis

problems as follows. Let the testing problem be 0 - 0 vs. 0 > e where

e is some real parameter of a statistical family. Let the test statistic

be Tn - D(60), large values of the statistic being significant. The level

attained is 1 - %(T - D(0)) where . is the d.f. of Tn - D(60).

under 60.

Assume that, under 00,

n 1 log P(T - D(O0 ) >  ) -(e 2y 0)(l+0 +n,)

where y0 > 0, C-C, and 0 and 0 are as in (1.1). Further, let

Tn ) D(O) a.s. [0] with D(O) s.t. D(6) > D(0) for 0 > e0 and

D(8) - D(O0) as 0 00. Then, under 6 > e0,

-1 log(l - %(Tn - D( 0)) - -[D() - D( 0)]
2 (1 + r. + rn,)/2Y0

where lim 06  r - 0 and liii r - 0 a.s. (6] for all 6 suffi-

ciently close to B0. In a sense, this means that performance of a test

based onTn T o - D(i0) is proportional to (D(O) - D(00))
2 and inversely

proportional to y0 , locally. A similar interpretation holds for two sided

tests as well. In Sections 3 and 4 we establish bounds like (1.1) for

various statistics based on m-dependent processes.I 2



2. SAMPLE MEAN OF LINEAR PROCESSES

We derive a Chernoff's theorem type LDP result for linear processes

using the following general theorem. For a r.v. X, let sup(X) =

inf{x: P(X > x) 0}.

Theorem 1. Let {Tn I be a sequence of statistics having the repre-

sentation IT - 4-1'. Y I <R n where tYi) is a sequence of i.i.d.

r.v.'s having mean zero and Rn is another sequence of statistics. For

a > 0, let

h(n,a) - inf{x > 0 s.t. E exp(xRn ) > exp(an)I

- n if R is degenerate at zero

If for some a finite, lim nn h(n,t) - , then

(2.1) liUO n-1 log P(Tn > nd) - inft>o{-td + log E exp(tYI

for d > 0, provided one of the following holds: A,. d # sup(Y1).

A2. P(Y1 - sup(Y1)) - 0.

Proof. It follows from the proof of Lemma 3.3 of Bahadur (1969) that

the function gx - inft>O E exp(-tx + tY1 ) is continuous on (0, sup(Y1 )).

On (sup(Y1) gx = 0. Further, if A2  holds, it can be shown that gx

is continuous on (0,). If gx is continuous at d and limn h(n,a) -w

it follows that

(2.2) lzn.K, n- l log P(Y n> d + 4a/h(n,c)) - log gd

Furthermore, some elementary inequalities and the definition of h(nc) imply

(2.3) IP(Tn > nd) - P(in > d ± 4a/h(n,)) _ P(Rn > 4na/h(n,a))

. < (-2cm)E exp(h(n,00 Rn12) <1 ep(--Qn).

Since the function h(n,a) is nondecreasing in a for every fixed n,

a can be chosen to be arbitrarily large; hence (2.2) and (2.3) yield (2.1).

3



We state the LDP result for linear processes as

Corollary 2.1. Let {Z i be a double sequence of i.i.d. r.v.'s with

mean zero and E exp(tZ0 ) < - for all real t. Let the process {X be

defined as X, , JjO. aj ZXj hee o,. Iaj I < - and z -jo,

aj 0 O. Then

(2.4) l~z n -1 log P( > d) - inft>o{-td +.log(E exp(tzZo)))

for d > 0 provided one of the following holds: (A,) d 0 sup(zZ0 ),

(4) P(zZ0 - sup(zZo)) - 0.

Proof. Let us define Xii - lj=O,i-i aj Zi_j  and ta,b =' i4 a,b ai

where a,b are nonnegative integers and b(> a) can be +w. Let

z - 1 + supi>, - I a I

so that z 0 > 0 and Ita,bI/ZO <1 for all 1 <a < b < Evidently

i.1,n xil - li.,, ton-1 zi m li-l, (zZi - tn-i+l Z)

Therefore it follows that

nixn - z2-nI < Rn - li-lnItn-i+l, ZiJ + liOoti+i,n+i Z-i1

Applying the fact that Lp-norms are nondecreasing in p > 1,

(2.5) log(E exp(tRn)) = log(E exp(tz0(Rn/Z 0 ))) /z [il,n Itn-i~lcOI/z0

+ 1I-o,- Iti+lsn+i /ZO]log(E exp(t--oiZo)) .

if Ji_0,_ Jail < -, both the terms In the [ ] bracket above are o(n), so

that

b
E exp(tR) < (E(exp(zot IZo1))) n

i,4



where n/b n + as n-. This implies in this case that

h(n,l) > inf{x s.t. E exp(z 0 x JZ0 1) > exp(n/b n

which converges to - as n-o; thus this corollary follows from Theorem 1.0

It may not be out of place to mention that Chanda (1972) also estab-

lished a LDP result for linear processes assuming that ai << pi for some

P E (0,1) and that the distribution of Z0  satisfies Cramer's condition.

We give below a counterexample to show that if none of the conditions (A1 )

and (A2 ) hold then (2.4) may be false.

A Counterexample. Let 0 < d - sup(Z 0) < -, 0 < P(Z0 = d) < 1 and

ai M 2- i -  for i > 0. Then z i 0 , ai w 1 and

P(Xn > d) =P(Zi = d for all integers i< n) - 0

whereas

P(Zn >d) - P(Zi - d for all 1 < i < n) - (P(Z0 9 d)) n

so that inft>0 {-td + log E exp(tZ0 )) - log P(Z 0 M sup(Z 0 )) > _

3. LINEAR STATISTICS BASED ON m-DEPENDENT PROCESSES

Hereafter {Y I denotes a sequence of m-dependent r.v.'s with mean 0,

ci's are positive constants. C. denotes a sequence with the property

lima,- Fn - C. O and On, are remainders with the properties

lim.. 0 O - 0 and limn.. 0 , = 0 for all e sufficiently small. For
ne

convenience, let us say that a process R(n,e) is (*) if for some 61,62

positive

1+6 2-62
P(JR(n,C)I > C _< c exp(- n(l + 0 + 0

5



for all positive e, sufficiently small. If a statistic Tn has the decom-

position T -T + R R is (*) and T has the LDP bound
n nE n, C nE n ,C

n log P(TnC .> c -(e 2 /2y)( I + oc + 0

then so does T
n

Theorem 2. Let v - V(Y1) + 2 
1 i-lm-1 cov(y1, ¥1+1) > 0 and H(t) -

E exp(tYi) < - for all Itt <a > 0. Then
-l

n log P(In > c) -(E2/2v)(i + o C 0 )

Proof. W.l.g. we assume v-l. Let C be small enough s.t. £71/2 > m.

Taking p [c - 1 / 2 ] and k - [n/(p4m)], we break the sum a iln Yi as

follows

li-l,n Yi - li-l,k (i + hi) + 'k+l

where p Yp and i m Jj~l'mY(p4n)(i_Y)+p+j. We

shall see first that n-i li-l,k Ti and n-l k+l are (*). It follows

by repeated application of 1der's inequality that E exp(aInTj/m)

< E exp(aIY1 i) < -; therefore E exp(eT1) < 1 + 2 for all positive

E in a neighborhood of zero. Consequently

P(li-l,k 1i > 2 c2 n 
9 / 8 ) < exp(-2 c2 n7 /4)(E exp(

/8 T)) k

<exp(-2 c 2 ne / 4 )( 1 + c 2  5/4k < exp(2 c 2 nc7 / 4 + c 2 k£5 / 4 )

< exp(-c 2 ne 7 / 4 )

for all e small. A siailar bound is established for -li-l,k T1i to

conclude that n-1 lt-l,k ni is (*). Turning to £.+1, we note that

6
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P~l l >e n9/8) <- P( i,.,p~m JYil I ne 9/8)

Sexp (-15/8n) E exp(3/4 ji.l,pam lYij)

< exp(- 1 5/8n) E exp(e3/4 ([C- 1 /2] + m) IY1) exp(-e 15/8n (1 + o(l)))

if C is small enough s.t. e3/4 ([e-1/2 ] + m) < a. Thus it only remains

to be seen that

P(Iifil,k E, n ) = exp(-ne 2(1 + 0 + 0 n,)/2)

Let us write P(li=l,k i .> n ) = P(li=l,k j > k an) where

= /4 , a = (n/k) E1/4 e = E C-/41( + O( 1/2)). Let us defineI i n n n

H (s) = E exp(s E) and

v(s) - (H*(s))- I E x exp(sx) dP(&' < x)

H (s) and v(s) are well defined in the region Ist < a CI/4 , to which

we confine the rest of the estimation. Applying Holder's inequality and

the moment inequality given as Lemma 1.9 of Ibragimov (1962), we have

IH*(s) - 1 - s2 E(1)2/21 < s3 E(IjI 3 exp(sIEjI))/6

s 3[EI 1,16 E exp(29 1/4 i=l,p l~)12/

< s3 [EE 1.6 E exp(2s E
1/4p iYI1)]1 / 2/6 <c3 s3

in the region Isi < a e1 /4/4. Also, it is easily seen that E( ) 2

1 hs /212 2 1/41 + O( /  Thus, IH*(s) - 1 - s21 < c4 s £I 1  By similar expan-

sions, one finds that

(3.1) IV(s) - sI < c5 8 £/4.

I7



That the function V(s) is continuous on (0, a 1/414] and is right

continuous at zero (0(0) = 0) follows from Dominated Convergence Theorem.

Utilizing these facts, (3.1) and Intermediate Value Theorem, we conclude

that the equation V(bn) = an  has solution for all n large enough and

that any solution has to satisfy bn = an + 0(an C1/4

Now, define the d.f. G(, bn) by

dG(x,bn) = (H (b )) exp(b x) dP( < <x)
n n n i

and let 2(b n) and r(bn) be its variance and the third moment. If

Gn(", bn) denotes the convolution of n copies of G(, bn ), then

(3.2) ( lk j > k an) - k (H*(b))k exp(-bn x) dGn(x, bn)

n

= A(bn) exp(-D(bn)z) dG (O(b n ) kl/2z + kv(bn), bn)

* k 1/2
where A(b) (H*(bn)) exp(-bn k an) and D(b) = o(b) bn k Some

easy expansions also show that a(b n ) - 1 + (b A(bn )  exp(-k(b2/2
n n() A~n) nx(k~

+ O(b5 / 2))), D(bn) = kl/2(b + 0(b2 )) and r(bn ) f 0(1). The Barry-
n n n n

Essen theorem and these estimates imply

supzER G (C(b n)k 1 / 2 z + kv(bn) , b) - (z) < c 6 k
-1/2

Now we are ready to estimate the desired probability. The r.h.s. of (3.2)

equals

A(b) rT exp(-D(bn)z) d(z)+ A(bn) O exp(-D(b)z) d(Gn(a(bn)k /2z)

n~~ j dkz) + 1/

S+ k an, hn)-, (z)) - A(bn) exp((D(bn)) 2 /2)[l-(D(bn)] + A(bn) 0(1 -I / 2 )

(using the integration by parts)

=exp(-n£ 2(l + 0 + 0 )/2)

substituting the estimates of A(b ), D(bn) and b
n n n

8



Theorem 2 generalizes very easily to the case of linear processes. In

fact, this extension only needs the assumption that the original r.v.'s have

m.g.f. in a neighborhood of zero. Using the bound (2.5) it is seen that

R is (*).
n

We now state a uniform version of Theorem 2. We need to recall this

result in the next section while dealing with multivariate Kolmogorov-

Smirnov statistics.

Theorem 3. Let f., P E A be a family of measurable functions defined

on real line. Let us assume sup PEA If P(Y i) I< f(Yi) where f is a mea-

surable function s.t. f(Y1 ) has m.g.f. in a neighborhood of zero, and

infA V > 0 where

V - V(f (Y1)) + 2 
4 .lm-l cov(fP(Yl)f f1(Y)+i)) "

Then

supsAln log P(n -1 Xi1ln fu(Yi) - f (Y > C) + (e2 /2vu)I 0 + 0

This claim is verified by checking that all the estimates in the proof

of Theorem 2, when adopted for f (Yi), are uniform in P E A under the

conditions assumed above.

The next theorem is a multivariate extension of Theorem 2. A corol-

lary of this theorem has been applied in the next section in connection

with the Anderson-Darling statistic.

Theorem 4. Let { Y ... ,I Y I be a stationary sequence of
___=_i ill iq

q-variate, m-dependent random vectors. We assume that E - {aij }qxq where

-r " cov(Yli, Yij) + Ik.l,m-l(cov(Yli, Yl+k,j) + cov(Y(l+k)i, Y 1 ))

is positive definite. For a bounded convex set C E Rq , with the null

2
vector as an interior point, let IC - inf{h (a)/aZa', where a is any

9



nonnull vector and a ex = h(a) is a supporting hyperplane of C ). Then

n-1 l og P(n-  .- ,n -i - E(Y-1) E e Cc) S2 IC + 0E + 0. 12

where Cc  is the complement of the set C.

The proof we have in mind is based on the ideas of Theorem 9 of Rubin

and Sethuraman (1965). It turns out that, given our Theorems 2 and 3,

essentially the same steps go through.

Corollary 3.1. In the special case C - {x: xAx' < 1} where A is

some positive definite matrix, (Ic)- (AZ)* - the largest eigenvalue of

the matrix AZ. Thus, if E - 0,

nllog P(Y A V' > 2)- -(nE2 /2 (AL) (1 + 0C + 0)
n -- n n,d

where = n- i-ln " Specializing further,

nl log _g >n- -(nc2/2C),) (1 + 0 + n,)

The last theorem of this section is about trimmed L-statistics. The

idea of Bahadur-Kiefer representation of quantiles is exploited in the

proof. Let F (*) and F-() denote the right continuous versions of
n n

empirical and quantile processes of (' Y2, ".." Yn)"

Theorem 5. Let F be the d.f. of Y1 and W be some function of

bounded variation on [a,0], 0 < a < 0 < 1. We define

L F 1 (t) dW(t) , L - F-(t) dW(t)

and assume that F"(x) exists V x E (F-(c-1), F 1 (04+6)), for a 6 > 0;

0 < C7 > F'(x) > c8  >0 and IF"(x)l <c 9  throughout the interval. If
F'(F 1 (0) f =ui {t - I(Xi -1F-(t))1/fto 'i - dW(t) and

10



0 - V(u 1 ) + 2 4 -1,,-1 c°v(u 1 +1 )

then

-log P(L -L > C) (n/(l + 0 + o )/ 2 .n~~ ho (z/

The proofs of this theorem and the theorems in the next section use

an exponential bound which we present as

Lema 3.1. Let {X I I be a stationary sequence of a-dependent,

bounded r.v.'s with mean zero and V(X1) + 2 4=l.m- cov(Yl" Yl+, ) <B <1.

For positive numbers D, Z satisfying Z < D and ZnB < D2 , there exist

positive constants c10 and cll, depending upon a and IIXi. only,

G.t.

I -ZP( 14-1,n Xi >-2 cO D) < c 11 e-

Proof. We write 4=l'n Xi -l,k (Ci + ni) + gk+l Just as in the

proof of Theorem 2, replacing Yi by Xi  and taking p-m.

P(y4.,k+l E, -clo D) I-exp(-Zo Z) E ,xp(zD-  -

c e xp(-c10 Z)(E exp(ZD 1l y)k

<Cll exp(-cl 0 Z + k log(l + c1 2 Z2 D-2B)) <cl, exp(-Z)

for c 1 0  large enough, since ZnB <D2 and V(&1) < 2B3. -

and + 1ilk rI are treated similarly to get the bound.

Proof of Theorem 5. With Bahadur-Kiefer representation of quantiles

in mind, we write

Ln-L- n-1  .,n i + R(n)

11n,



Under the assumed regularity conditions about F, if E (.) and En(.)
n

denote the right continuous versions of empirical and quantile processes

of U - F(X ), i-i, ..., n, then

bR(n)I 12 supt[0,0] IF1 (t) - ) F (t) (F F(t)) -t)ftlI

-12  -1 -1 n t~f'
" 12 sutE[a, IF- (n (t)) su (E71(t) + F ( 0 ) - Otf

_c 13 sup tc I a,B] 0 1 En 1(t) - t + Et(t) I - t) 2 .

The theorem is established by showing that the two statistics in the r.h.s.

above are (*). This is done by the method of subdivision, applying Lemma

3.1 for probability bounds. The details are long but seem to be quite

standard ones and so are omitted. Babu and Singh (1978) may be found helpful

in verifying the claims.

4. GOODNESS OF FIT STATISTICS

Throughout this section {Y } denotes a stationary sequence of q--qi

variate, a-dependent random vectors with the underlying d.f. F having

continuous marginals. We discuss in this section LDP for multivariate

versions of two goodness of fit statistics - Kolmogorov-Smirnov statistics

and Anderson-Darling statistics, defined as

KS - sup{ IF_(X) - F(x)I; x E Rq j
n  M

AD2 _ J [F(x) - F(x)]2 h2 (x) dx

qR,; where F denotes e.d.f. { } and h is some bounded continuous function

on R We assume further that marginal distributions are U(O,11, which of

12



course can be achieved by suitable transformation. This assumption reduces

all our considerations to [0 , 1 ]q. We denote this set by J hereafter.

Theorem 6. If r(.,.) denotes the covariance kernel on Jxj defined

as

r(s,,t) - cov(i(Y_ <s), i(y1 <t)) + Y. (Y14[cov(IY _ s_, lYi <t)

+ cov(I(Y1  <t), '~1l+i <s))

and r, - sup{r(t, t); t E J) > 0, then

-1 log P(KS >e) - (nI/2r.)(l+0 +0
n n C n0,td

Proof. For a set S, let Ca(S) denote its cardinality. Given C > 0,

we define

BF - {0, C2, 2C2 , ... , [*-2]**, 1,

B - {x: x E Be and r(x, x) > (3c 1 0 ) 2 r*}

B C Be: - BC

and

r - max(r(t, t); t E )
_* C

where c 1 0  is the constant appearing in Lemma 3.1, corresponding to

clxcll - 1. Thus B. = B U B* . Because of the uniform continuity of the

function r(x, x) in x E J and the condition r > 0, the set B* is

nonempty for £ sufficiently small and r - r* + 0.

Given x E J, there exists an element t- (tl, t 2 , ... , tq) of B£

which belongs to the set

W It (t 2) A 1].
Jinl,q j j

13



This, together with the assumption that marginals are U(0,1], makes sure

that

2 2

where t' - ((t 1 + C2) A 1,.. (t + C2) A 1). As a consequence of this
I q

and the monotone property of F,

Isup tEJI (t)- (t )I- maxtEB_ IF n(t~) 11t jqC~

therefore

(4.1) P(max F n17(t) -F(t) I Ce n<P(KSn en)

* llma~tEB* IF_) n .~I e£ U £c2)

*+P(maxtEB** IF Mt EF(t) e~ q2)

We now estimate the probabilities appearing in (4.1) to arrive at the

desired theorem.

By an appeal to Theorem 3,

(4.2) P(maxtrcB* IF (t) - ft)I 2 en - q 2)

<Ca (B) max {P(F_(t) -P) S - qC 2) t ED
C -n -n C

<Ca(B*) exp(-ne 2 (1 +0 + 0 )/2r)
C C n, C *

<Ca (B*)exp(-ne2( + 0~ +O0 )/2r*)

If to denotes a member of B which maximizes r(o,o) over Be then

(4.3) P (max , - !Fn) f

2 2exp(-ne (1 + 0C+ 0 n)/2r(t, e0)) - exp(-ne (1 + 0C+ 0n' )/2r*).

14



Finally, the rightmost term of (4.1) is estimated using Lemmsa 3.1. Lea

3.wth D (C - 2 - 2 -23. wthD n qC M/c10  Z ne Ir and B - (3c. 0  r* implies

(4.4) P(max tEB ** !(-t) En q~t I - 2

< Ca (B*) max{IP(F_(t) F F(t) e_ -q );2 tE B }

-exp(-n 
2 .(l + 0C+ On, )rd)

for all C small. The theorem now follows from (4.1) - (4.4).

To get similar LDP bound for ADn , we need to develop some notation

first. For a function g defined on J, let g2 -(.r g 2 x)dx)) /2 . if

2. is a finite dimensional vector, JJ2.JJ denotes its Euclidean norm. Also,

we define

[r-h]* - sup{I1f rc5, t) h(s) h(t) g(s) del 2  is a continuous function

on J with 119112 -1,

{r-h) = {r(, t) h(s) h(t)) a matrix of order Car(B )x Car(B)
C 8,tEB~ C C C

[rh, M (Car(B ))-1 sup{l1{r-h}F - 11 , where X. is a vector of dimension

Car(B C)with (JAII- 11.

It is verified through the standard approximation of integrals with finite

smthat [r-h]E) . [r-h] + 0C

Theorem 7. If (roh]* > 0, then

n1log VA n > - -.(ne 2 2[r~h] )(l + o C + qOne)

2Proof. Approximation of AD by an average over the set BC implies

15



IAD 2 (Car(B ))- 1'~t _E E (t))2 h2 (.tQ

< sup{IQF(a) - F(s))2 h 2(s) - (F (t) -~))2 h 2(t~)J

2
s, tE J)

<c 12 sup{14 n(s) -F(s) F n4(t) + F(t)I + 102(s) - h2(t)I;

LE.L <1,s, t E J)

where tId < E2means that the differences between corresponding coordi-

2nates are < e . An application of Corollary 3.1 shows

n-1 log P((Car(B~)' __- 2 (F(t) F(t))2 h 2(t) > F- 2
d l tEB -n

-( 2[rh )( + C + 0 n d -(nE 2 /2[r-h]*)(1 + 0a + 0 n)

Because h is a continuous function on the compact set J,

sup{lh 2(s) - h 2 (t) I;,t E J, t- t I < C2 0 e

Hence it only remains to be seen that the remainder

(4.5) c1  sup{14 (s) - F(s) -F (t) + F(t)j; stEJ, L-~

is W*. This is done using Bonferroni inequality and Lemma 3.1. If

I._tI< £2,

(4.6) V(I(Y1  a I(Y1 < L)) + 2 1,.4 3 1 ~ cov(I(Y1 l I% <t)

I(Y,+i a I(Y 1, t) 2m q£2 *4

2The dependence of (4.6) on c is exploited through Lemma 3.1 to provej ~ ~that (4.5) is ()

Professor Kesar Singh
Indian Statistical Institute
Calcutta, India
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